Endlagerkonzepte in Ton/Tonstein/Kristallin:

Forschungsstand und Forschungsbedarf

Wilhelm Bollingerfehr

DBE TECHNOLOGY GmbH
Peine

ESK Workshop zur deutschen Endlagerforschung
Bonn
20. Januar 2015

1

Inhaltsübersicht =

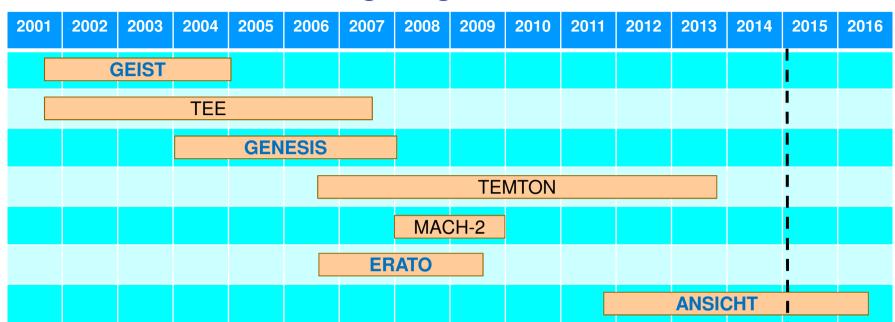
- Stand der Entwicklung von Endlagerkonzepten/-techniken für ein HAW-Endlager in *Tonstein* und *Kristallin* sowie erkannter FuE-Bedarf
 - Konzeption und Auslegung eines Endlagerbergwerkes
 - Technik und Logistik zur Herstellung / Ausbau von Grubenräumen
 - Technik zum Transport und zur Einlagerung von Endlagerbehältern
 - Verfüll- und Verschlusskonzepte und -techniken
 - Konzept und Technik zur Rückholung

Wesentliche Grundlagen für Konzeptfindung:

1. Art und Menge des endzulagernden Inventars

 relativ präzise erfasst (VSG-Daten: Abfallmengengerüst; BfS-Abfalldatenerhebung, ggf. weitere Abfälle gemäß NaPro (BMUB))

2. Beschreibung der geologischen Gesamtsituation


 Verbreitungsgebiete von Ton- und Kristallinvorkommen in Deutschland bekannt (Ton- und Kristallin-Studie der BGR)

3. Sicherheits- und Sicherheitsnachweiskonzept

- d.h.: methodischer Ansatz, wie die Sicherheit in einem Endlager hergestellt und nachgewiesen werden soll
 - Methodischer Ansatz (Konzept des sicheren Einschlusses) i.R. des FuE-Vorhabens ISIBEL entwickelt
 - konkrete und erfolgreiche Anwendung bei der VSG (für Salz)
 - Übertragbarkeit auf Endlager im Wirtsgestein Ton i. R. des FuE-Vorhabens ANSICHT in Arbeit
 - für Kristallin bisher dazu keine konkreten Überlegungen

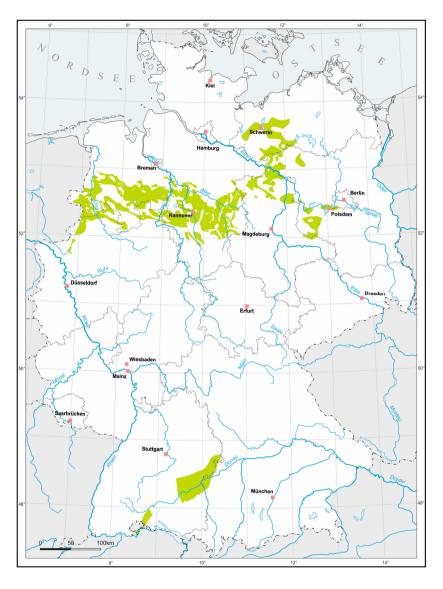
F&E-Vorhaben zur Endlagerung im Tonstein

FuE-Vorhaben zur Konzeptentwicklung für ein HAW-Endlager in Ton:

GEIST	Vergleich von Endlagerkonzepten in Salz und Ton
TEE	Beteiligung an in-situ Versuchen in den Untertagelaboratorien (URL) Bure, Frankreich und Mt. Terri, Schweiz
GENESIS	Endlagerauslegung für ein generisches Endlager im Tonstein in Nord- und Süd-Deutschland
TEMTON	Untersuchung thermo-hydro-mechanischer Effekte im Tonstein (Beteiligung in Bure und Mt. Terri)
MACH-2	Machbarkeitsstudie für einen in-situ Versuch in Mt. Terri (THM-Simulationen)
ERATO	Entwicklung eines deutschen Referenzkonzeptes für ein Endlager im Tonstein
ANSICHT	Entwicklung einer Methode für den Nachweis des sicheren Einschlusses im Tonstein in Deutschland

Endlagerkonzeptentwicklung =

Stand der Forschung und Entwicklung:


repräsentiert im FuE-Vorhaben ANSICHT(Gemeinschaftsprojekt von BGR, DBE TECHNOLOGY und GRS)

Randbedingungen:

- Grundlage waren Ergebnisse bisheriger FuE-Vorhaben
 - > für das technisches Konzept: GEIST; GENESIS und ERATO
 - für das Sicherheitskonzept: ISIBEL und VSG
- Modellhafte Standortdaten (Basis: BGR-Studien)
- Thermisches Auslegungskriterium:
 - ➤ T_{max} = 150°C (Kontakt Endlagerbehälter/geotechnische Barriere)
- Geotechnische Nahfeldbarriere am Endlagerbehälter

Modellhafte Standortdaten

Basis: Regionale Tonstudie der BGR (2007) untersuchungswürdige Tongesteinsformationen in Deutschland (Hoth et al. 2007)

Auswahlkriterien:

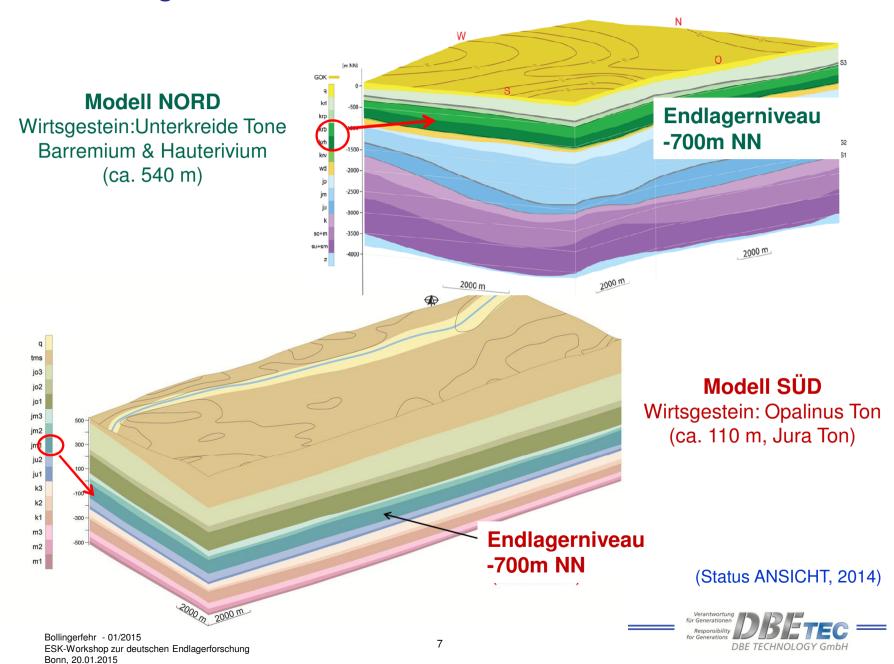
Gebirgsdurchlässigkeit: kleiner 10⁻¹⁰ m/s

Tiefenlage: 300 bis 1000 m

Ausdehnung: größer 10 km²

Mächtigkeit: größer 100 m

- Weitere Kriterien: Untergrundnutzung, Störungshäufigkeit, Neigung
- Ausschlusskriterien: Vulkanismus, Erdbeben, aktive Störungszonen


Neue Anforderungen in ANSICHT:

- Potenzielles Einlagerungsniveau in einer Teufenlage zwischen 600 m und 800 m
- Standort in einer regional gut charakterisierbaren tonigen Schichtenfolge

(Status ANSICHT, 2014)

Modellregionen

Sicherheitskonzept

Sicherheitsanforderungen des BMU (2010)

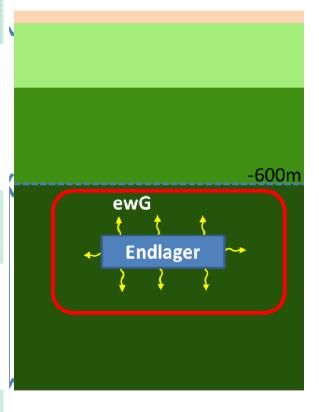
Nachsorgefreier Einschluss der RN im einschlusswirksamen Gebirgsbereich (ewG)

Geringfügige Freisetzungen von RN am Rand des ewG

Ansatz in ANSICHT

Prinzip: Einschluss der Radionuklide durch Behinderung des Schadstofftransportes

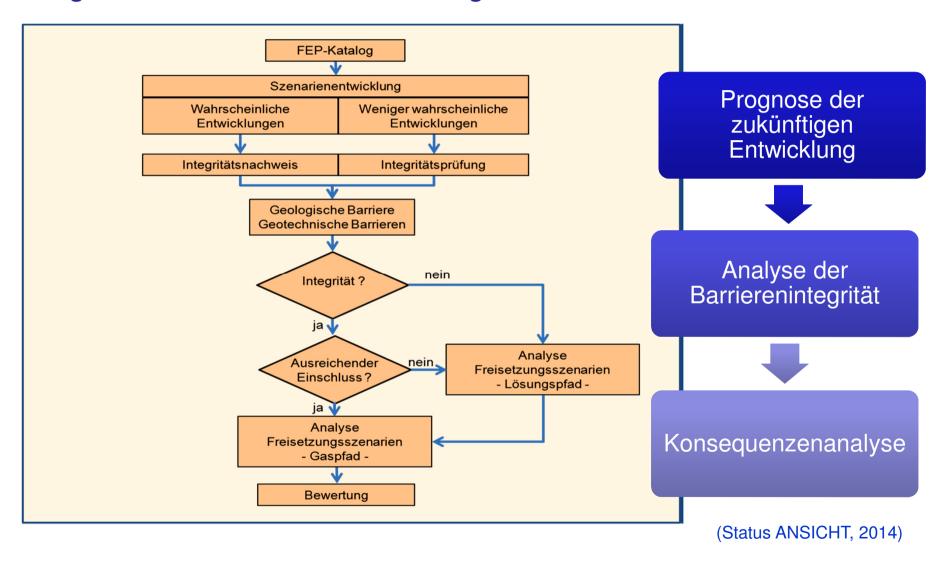
Begrenzung des advektiven und diffusiven Stofftransportes


Wiederherstellung der ursprünglichen geringen Permeabilität im ew<u>G</u>

Einschluss / Rückhaltung durch

Wirtsgestein: geringe Permeabilität, Sorption, Plastizität ewG:

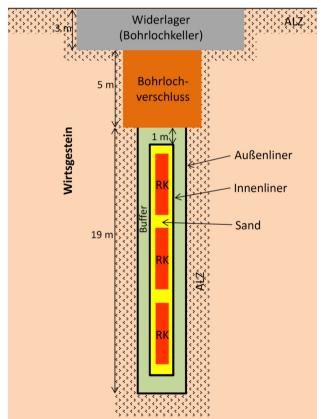
Integrität über den Nachweiszeitraum Verschlussbauwerke



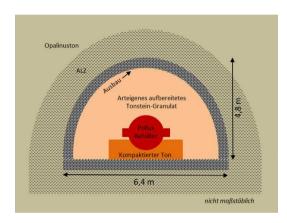
(Status ANSICHT, 2014)

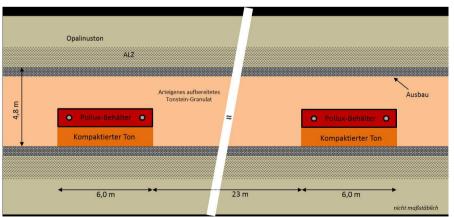
Sicherheitsnachweiskonzept

Vorgehen bei der Sicherheitsbewertung eines Tonstandortes



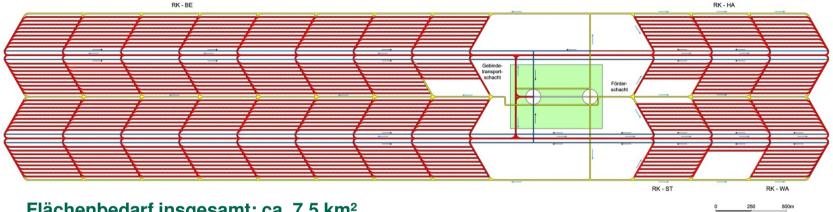
Konzeptentwicklung im FuE-Vorhaben ANSICHT =


Konzeptauswahl angepasst an geologische Randbedingungen


Bohrlochlagerungskonzept für Standortmodell NORD

Streckenlagerungskonzept für Standortmodell SÜD

(Status ANSICHT, 2014)

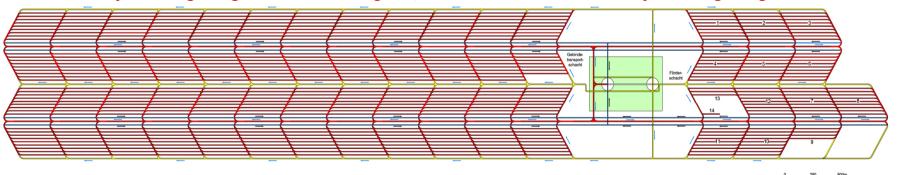


— Grubengebäudeplanung

Modell Nord: Bohrlochlagerungskonzept (für ca. 540m Tonschicht)

32 Felder mit je 9 Strecken á 13 Bohrlöcher für ausg. BE.

12 Felder mit je 9 Strecken á 13 Bohrlöcher für WA



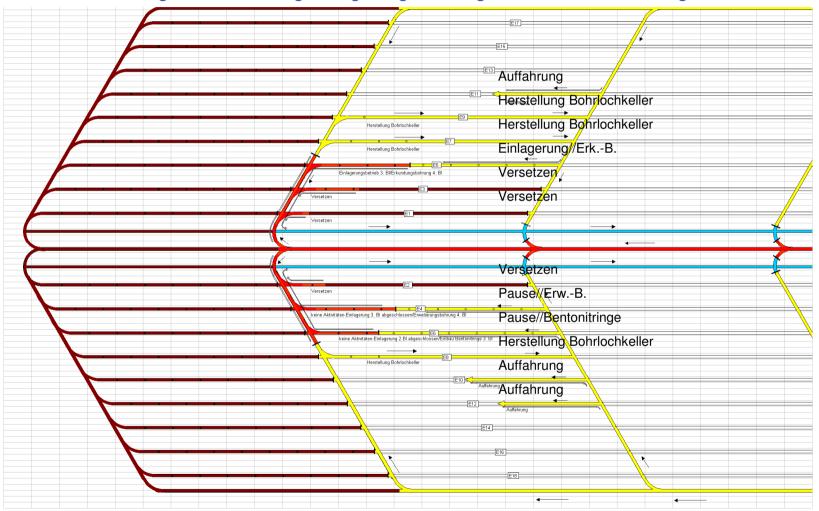
Flächenbedarf insgesamt: ca. 7,5 km²

Modell Süd: Streckenlagerungskonzept (für ca. 110m Tonschicht)

48 Felder mit je 9 Einlagerungsstrecken für ausg. BE;

13 Felder mit je 9 Einlagerungsstrecken für WA

Flächenbedarf insgesamt: ca. 11 km²


BE = Brennelemente (Status ANSICHT, 2014) WA = Wiederaufarbeitungsabfälle

DBE TECHNOLOGY GmbH

Grubengebäudeplanung

Planung betrieblicher Abläufe: Einlagerungsfortschritt 1 Brennstabkokille pro 2 Arbeitstage –

Erkundung und Herstellung Einlagerungsbohrung u. Einbau Bentonit-Ringe in 3 Strecken

13 Betriebspunkte in 12 Strecken

___ Technik: Herstellung Grubenräume =

Streckenauffahrung: Querschnittsform: bogenförmig

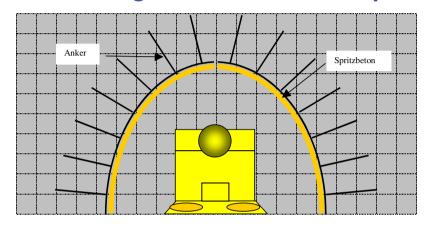
Stand der Technik:

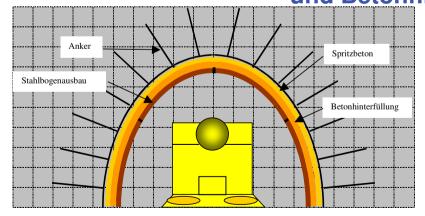
- Auffahrung: maschinell mit TSM (Teilschnittmaschine)
- Alternativ: Vollquerschnitt mit Tunnelbohrmaschine)

z.B.: MT 300 (Fa. Sandvik Mining and Construction Central Europe GmbH)

____ Technik: Herstellung Bohrlochkeller _____

Stand der Technik:


Kettenschrämmaschine - Korfmann Schrämmaschine HSTK 60 NS


Stand der Technik:

für kurzlebige Strecken: Anker-Spritzbeton-Ausbau

für langlebige Strecken: Anker-Spritzbeton-Ausbau mit Stahlbogenausbau und Betonhinterfüllung

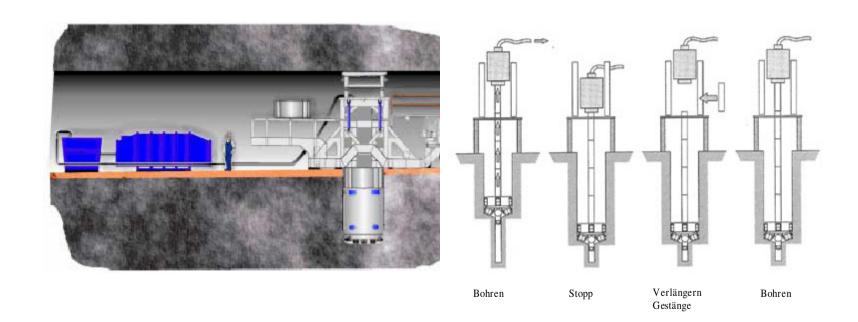
___ Technik: Ausbau Grubenräume =

Stand der Technik:

z.B. Spritzbetonmanipulator Meyco Oruga

z. B. Ausbaumanipulator GTA

z. B. Ausbaubühne GTA

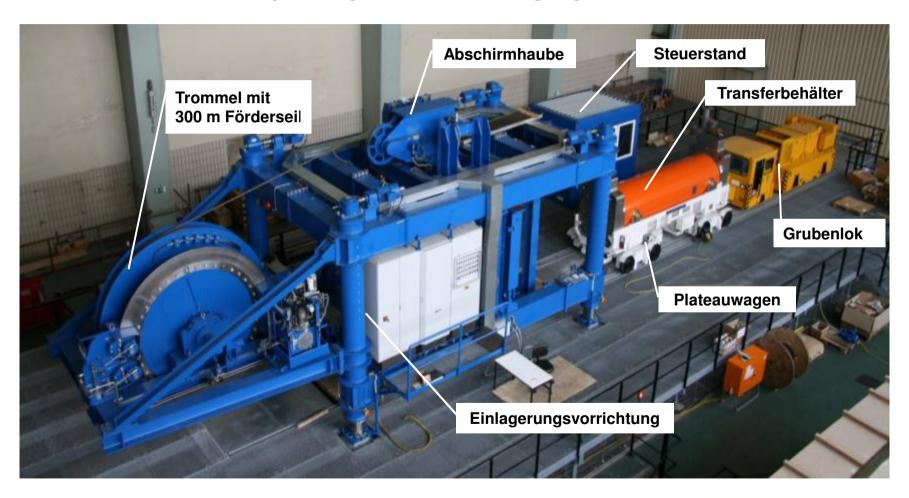

____ Technik: Herstellung der Einlagerungsbohrlöcher: =

Stand der Technik für Hartgestein (Prüfung für Ton erf.):

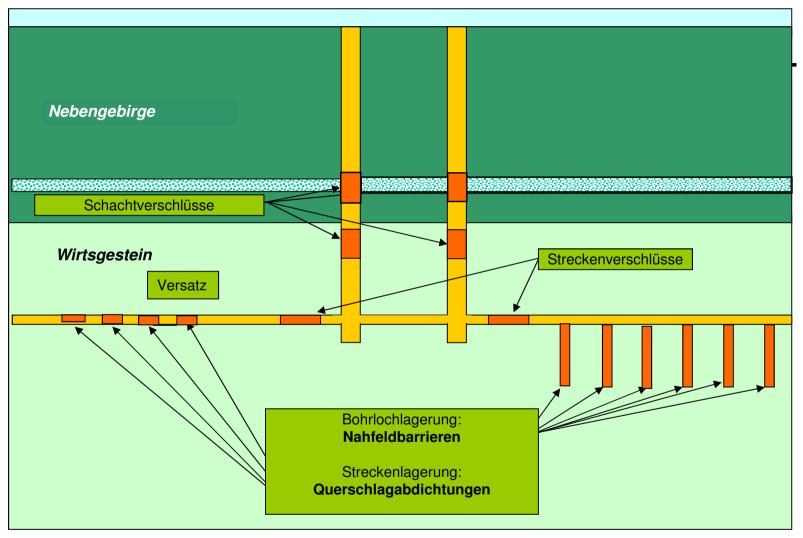
Pneumatische Bohrkleinabförderung mit indirekter Spülung und Absaugung für Herstellung Einlagerungsbohrlöcher (T = 9 m, D = 1,75 m) in Granitformation (Untertagelabor Äspö, Schweden):

Robbins SBM 1.8

Reverse Raise Boring

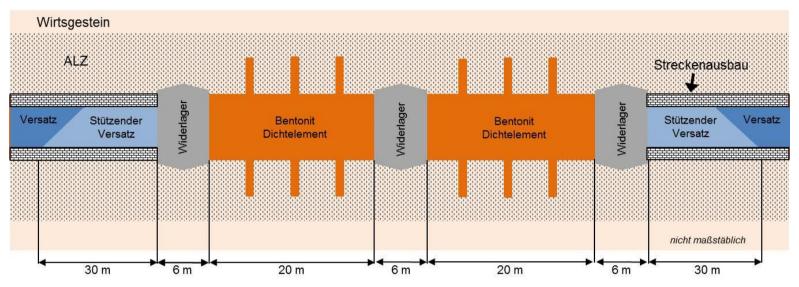


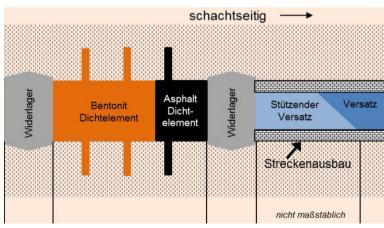
____ Technik: Transport und Einlagerung =


Stand der Technik: Demonstrationsversuche zur Einlagerung von Brennstabkokillen in vertikale Bohrlöcher (2009)

> Anpassungen an Randbedingungen in Ton erforderlich

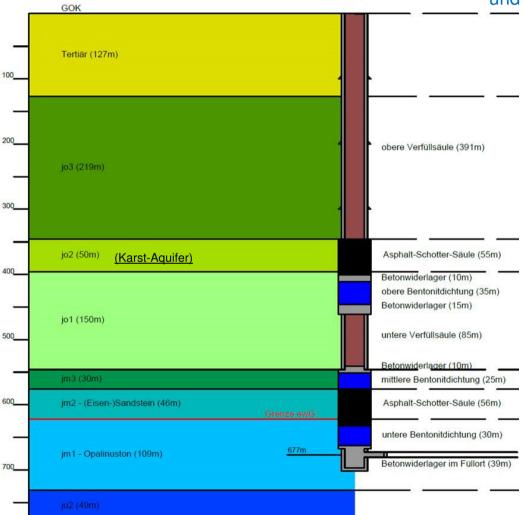
___ Verfüll- und Verschlusskonzept =




(Status ANSICHT, 2014)

Werfüll- und Verschlusskonzept

Streckenverschlusskonzepte

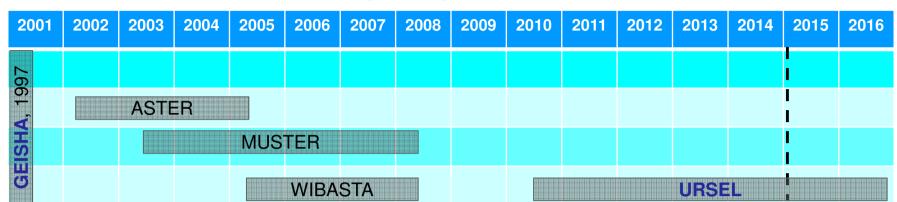

(Status ANSICHT, 2014)

____ Verfüll- und Verschlusskonzept

Schachtverschlusskonzept: Modell Süd

(Ergebnis aus Interaktion in den FuE-Vorhaben ANSICHT und ELSA)

(Status ELSA, 2014)


FuE-Bedarf zur Konzeptentwicklung und Technik für ein HAW-Endlager in Ton

Aufbauend auf dem Kenntnisstand im Vorhaben ANSICHT:

- Vertiefende Planungen zur Auslegung eines Endlagerbergwerkes unter Berücksichtigung der Anforderung zur Rückholung
- Überprüfung der Technik zur Herstellung und zum Ausbau von Grubenräumen für konkrete geol. Umgebungsbedingungen
- Entwicklung von Endlagerbehälterkonzepten (Material, Funktionen, etc.)
- Entwicklung, Fertigung und Erprobung (Demonstration) der Technik zum Transport und zur Einlagerung von Endlagerbehältern
- Konzept und Technik zur Rückholung entwickeln, Komponenten und Einrichtungen fertigen und in Demonstrationsversuchen deren Sicherheit und Zuverlässigkeit nachweisen
- Analyse der Betriebssicherheit auch für die Rückholung
- Verfüll- und Verschlusskonzepte und –techniken weiterentwickeln und durch Demonstrationsversuche Funktionsnachweise erbringen

F&E-Vorhaben zur Endlagerung im Kristallin (z. B. Granit)

FuE-Vorhaben zur Konzeptentwicklung für ein HAW-Endlager in Kristallin:

GEISHA: Gegenüberstellung von Endlagerkonzepten in Salz und Hartgestein (Federführung FZK; he

ASTER Anforderungen an die Standorterkundung für HAW-Endlager im Hartgestein

MUSTER Untersuchungen zum thermo-hydraulischen Verhalten von Bentonit-Barrieren im Granit

WIBASTA Untersuchungen zur Wirksamkeit des geologischen und geotechnischen Barrierensystems im Hinblick auf die

Standortauswahl in magmatischen Gesteinen

URSEL Untersuchungen zur Robustheit der Sicherheitsaussage zu HAW-Endlagersystemen in magmatischen

Gesteinen

Konzeptenwicklung =

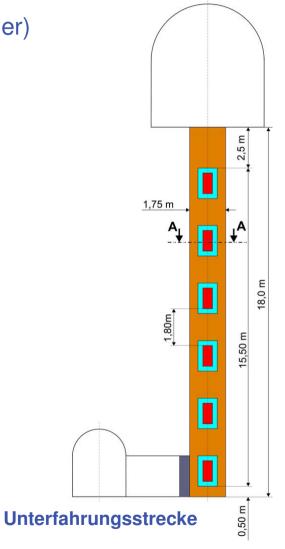
Der Stand der Entwicklung von Konzepten für ein HAW-Endlager in Hartgestein in Deutschland basiert auf dem GEISHA-Vorhaben (Gegenüberstellung von Endlagerkonzepten in Salz und Hartgestein); 1997: Abschlussbericht FZK - heute KIT:

- in Anlehnung an Endlagerkonzepte im Ausland in den 1990er Jahren Abschätzungen für ein HAW-Endlager in Hartgestein in Deutschland – keine Konzeptentwicklung und keine technische Planung
- grundsätzlicher Vergleich mit dem Referenzkonzept in Salz (hinsichtlich Zeit und Kosten)

Seitdem keine weiteren konzeptionellen oder technischen Planungen für ein HAW-Endlager in Hartgestein

In den vorgenanten FuE-Vorhaben (ASTER; WIBASTA; MUSTER, URSEL) ging es im Wesentlichen um Erkundungsmethoden für Hartgestein oder um Fragen zu geotechnischen Barrieren (auch Kooperationen mit Partnern in Schweden und Russland)

Konzeptenwicklung =


Beispiel aus Vorhaben ASTER: Konzept Bohrlochlagerung (Ansatz vom russ. Partner)

- Sicherheitskonzept und Sicherheitsnachweiskonzept sind zu entwickeln
- Sicherheitsfunktion durch
 - > technische Barieren und/oder
 - geotechnische Barrierengewährleisten

(geklüftetes Wirtsgestein kann Sicherheitsfunktion nur eingeschränkt übernehmen)

 Technik zum Transport und zur Einlagerung entwickeln

Einlagerungsstrecke

___ FuE-Bedarf Endlagerung in Kristallin _

Grundsätzliche Fragen durch FuE zu klären:

- Entwicklung eines Sicherheits- und Sicherheitsnachweiskonzeptes ("sicherer Einschluss" oder Alternative dazu)
- Darauf zugeschnittenes Konzept zur Auslegung, zum Betrieb und zum Verschluss eines Endlagerbergwerkes
- Eine erste Ideenskizze dazu wurde von BGR, DBETECHNOLOGY und GRS entworfen und befindet sich in der Abstimmung mit BMWi und PTKA

In einer zweiten Phase vertiefende Planungen analog zum FuE-Bedarf für ein HAW-Endlager in Ton (s. Folie 22)

Mit Blick auf StandAG (unabhängig vom Wirtsgestein):

• Entwicklung einer Methodik zum Vergleich von Endlagersystemen

DBE TECHNOLOGY GmbH

Vielen Dank für Ihre Aufmerksamkeit.

